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Abstract-A novel technique has been developed for the direct non-contact measurement of the
radial deformations of a specimen during a compression Kolsky bar (split-Hopkinson pressure bar)
experiment. Application of the new technique makes possible an analysis of the compression Kolsky
bar experiment in terms of finite deformations, since the technique provides a complete experimental
determination of the deformation gradient tensor during dynamic loading. Using the new technique.
we have determined the relative validity of the incompressibility and Bell constraints for finite
deformation dynamic plasticity. The experimental results show that the plastic incompressibility
constraint is more appropriate for the dynamic compression of 6061-T6 aluminum. It is also shown
that the traditional measure of axial strain rate derived from Kolsky bar experiments should be
replaced by the axial rate of deformation that is valid for finite deformations. Finally. the technique
has been used to investigate the dynamic compression of porous pure iron. It is shown that the
new technique extends the capabilities of the compression Kolsky bar technique to include the
investigation of plastically compressible materials. CopyrightC 1996 Elsevier Science Ltd

1. INTRODUCTION AND BACKGROUND

The compression Kolsky bar or split-Hopkinson pressure bar (SHPB) has become the most
widely used experimental technique for the determination of the mechanical properties of
materials at intermediate strain rates (102-104 S-I). The technique was first developed by
Kolsky (1949), and has since been used to study the dynamic behavior of metals, polymers,
ceramics, and composites. An excellent review of the experimental technique is provided
by Follansbee (1985).

However, the range of application of the compression Kolsky bar is limited in several
ways. The primary limitations arise from the fact that the technique makes measurements
at significant distances from the specimen, and then uses the elasticity of the bars and
assumptions on the interface conditions to deduce the properties of the material under study.
Since longitudinal waves undergo dispersion in bars, and since the interface conditions are
difficult to quantify, there is usually some uncertainty as to the strain rate and the strain in
the specimen. The limitations placed on the experimental technique in terms of frictional
constraints, radial inertia and so forth result in restrictions on specimen sizes, length-to
diameter ratios and surface preparation for a valid test [e.g. Bertholf and Karnes (1975)].
When the experiments are correctly designed using these now well-established restrictions,
direct measurement of local strains on the sample using strain gages has shown that the
signals obtained from the remote gages on the bars provide quite accurate results for
specimen strains greater than about 1% [e.g. Sharpe and Hoge (1972)].

Very small strains are developed in relatively brittle materials such as ceramics and
composites, and so strain gages on the specimen are often required in experiments on these
materials. Indeed, several researchers who study ceramics and composites routinely apply
strain gages directly to the specimen [e.g. Staehler et al. (1993), Subhash and Nemat
Nasser (1993), Ramesh and Ravichandran (1990)]. However, the application of strain
gages directly on each small specimen is a comparatively expensive and time-consuming
process. A direct non-contact measure of the specimen strain would be of great value under
these circumstances.
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SPECIMEN

Fig I. Schematic of the compression Kolsky bar (or split-Hopkinson pressure bar).

This paper represents a major extension of the range of application of the compression
Kolsky bar. utilizing a finite deformation analysis that is made possible because of a novel
experimental technique that we have developed. The new technique allows the direct non
contact measurement of radial strains in the specimen during a compression Kolsky bar
test. If one assumes plastic incompressibility. then this new technique provides a direct
measure of the specimen strain and strain rate.

For the sake of completeness. and because the new technique represents a substantial
extension. we begin with a very brief description of the traditional compression Kolsky bar
technique. We then proceed to describe the new experimental technique in detail. and use
the results to formulate the finite deformation kinematics corresponding to the experiment.
When applied to the dynamic plastic deformation of metals. the finite deformation analysis
coupled with the experimental measurements allows us to examine experimentally the
incompressibility constraint that is commonly assumed in plasticity. When applied to the
plastic deformation of porous metals. the techniq ue allows us to extract the first complete
experimental measurements of the plastic compressibility of metals during dynamic defor
mations.

The compression Kolsky har (or SHP B)
The compression Kolsky bar or split-Hopkinson pressure bar (Fig. I) consists of two

long metal bars that are designed to remain elastic throughout the test. These bars sandwich
a short cylindrical specimen. One end of one of the bars (the incident or input bar) is
impacted by a projectile (typically fired from a gas gun). The compressive pulse generated by
the impact propagates down the incident bar into the specimen. After several reverberations
within the specimen. a transmitted pulse is sent into the second bar (called the transmitter
or output bar) and a reflected pulse is sent back into the incident bar. Conventionally.
strain gages placed on the input and output bars are used to measure the pulses propagating
in the bars.

Let the strain in the reflected pulse be denoted by ;;R and that in the transmitted pulse
by I',T' Then. once a uniform stress state has been achieved in the specimen. we obtain
expressions for the mean specimen stress S and the specimen strain e, in terms of the strains
in the reflected and transmitted pulses [e.g. Lindholm (1964)] :

(I)

and

(2)

where 10 and A, are the specimen initial length and specimen initial cross-sectional area. A h

is the bar cross-section area, and u\ and U2 are the displacements corresponding to the
specimen-input bar and specimen-output bar interfaces respectively. Note that e, is usually
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dehned as (10-1);/0 so that it is positive for compressive deformations (I is the current
specimen length). The mean specimen strain rate is then given by

(3)

Here Co is the bar velocity, given by -J E!p; E is the Young's modulus, and p is the mass
density of the bar material. Thus the strain rate in the specimen can be determined from
the reflected pulse, and the stress in the specimen can be determined from the transmitted
pulse. Typically the strain gage signals are processed to correct for the dispersion of the
longitudinal wave that occurs in the bars (note that all of the remote gage results presented
in this paper have been corrected for dispersion). The corrected strain rate pulse is then
integrated and the resulting strain-time history correlated with the stress-time history to
obtain the engineering stress-strain curve at each strain rate (corresponding to that in (3)).

Note that the relations (2) and (3) were obtained after assuming the equilibration of
the stress state throughout the specimen, a process that takes some time and during which
some (small) strain is developed within the specimen. For relatively brittle materials, such
as ceramics, most of the material behavior of interest may occur during those small initial
strains; hence the use of strain gages attached directly to the specimen for such experiments
[e.g. Staehler et al. (1993), Ramesh and Ravichandran (1990)].

The compression Kolsky bar technique assumes that the specimen remains in a uniaxial
stress state, so that the measurement of the axial stress (through the measurement of the
transmitted load) is sufficient to completely characterize the stress state. This is likely a
good approximation, considering the specimen dimensions used in practice, and assuming
properly lubricated specimen-bar interfaces (for a detailed discussion of these issues, see
the papers by Bertholf and Karnes (1975) and by Jahsman (1971)). However, assuming
homogeneous axisymmetric deformations only for the specimen, it is clear that both axial
and radial strains are developed in the specimen during the experiment. Yet the compression
Kolsky bar technique provides a measure of only the axial strain in the specimen (through
(2)). One is therefore forced to assume incompressibility of the material of the specimen in
order to obtain an estimate of the radial strain. Further, the assumption of material
incompressibility is required in order to obtain true stress-true strain data from such
experiments.

The next section presents a new technique for the direct, non-contact measurement of
the radial strain of the specimen during the dynamic deformation. Thus the constraint of
incompressibility need no longer be imposed in order to use the compression Kolsky bar
(this would be of particular value when studying porous metals and geologic materials).

2. THE NEW EXPERIMENTAL TECHNIQUE

The Laser Occlusive Radius Detector
A schematic diagram of the experimental configuration for the Laser Occlusive Radius

Detector (LORD) is shown in Fig. 2. The LORD system is set up so that its operational

Diode Laser Collector

Optical Rail

Fig. 2. Schematic of the experimental configuration of the Laser Occlusive Radius Detector (LORD).
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plane is orthogonal to the axis of the compression Kolsky bar, with the Kolsky bar specimen
alone intersecting that plane. The system consists of three major components: an optical
arrangement for generating a laser sheet, optics and optoelectronics for collecting the light,
and the necessary mounting systems. A photograph of the current incarnation of the LORD
is presented in Fig. 3. Part of the Kolsky bar can also be seen in the photograph.

The optical emission system consists ofa diode laser operating at 670 nm and generating
3 mW of output power, integrated with focusing and line generating optics that produce a
sheet of laser light with a central region of nearly uniform intensity per unit length across
the sheet. The laser is mounted within a specially designed holder to improve pointing
stability, and the entire arrangement is mounted on an optical rail for ease of alignment.
The integrated optics produces a sheet of coherent light that can be focused to a thickness
of a fraction of a millimeter at the specimen. The sheet is emitted with a fixed divergence
angle in the plane of the sheet (which is orthogonal to the specimen axis); this can be
collimated to generate a parallel beam in the plane, but such collimation is not necessary.

The sensing system consists of a collector lens that integrates all of the incoming light
to a silicon PIN photodiode located at its focus. The photodiode signal is pre-amplified;
the optoelectronics and the preamplifier together have a bandwidth of 50 MHz. The output
of this system consists of a voltage that is proportional to the total amount of light entering
the collector lens.

Principle oj" operation
The basic principle of operation of the LORD is extremely simple. The specimen

blocks part of the laser sheet before it reaches the collection optics; as the specimen is
deformed, its diameter increases, and it occludes increasing amounts of light in the sheet,
resulting in a drop in the voltage output from the photodiode. By capturing the photodiode
signal during the test, and using a calibration to relate the voltage output to the diametral
change, we are able to extract the dynamic radial deformations that are developed in the
specimen during a compression Kolsky bar test.

The LORD system is calibrated by using a conical calibration specimen that is slowly
translated (along the cone axis) into the laser sheet while monitoring the LORD output.
Since the cone angle is known, this procedure provides an output voltage versus specimen
diameter calibration curve such as that shown in Fig. 4. Note the linearity of the curve
(representing the uniformity of the laser intensity within the sheet). An aperture stop was
used to eliminate the edges of the sheet, which contain the maximum variation in the
intensity. Specimen radial strain can then be directly obtained from the dynamic tests using
the calibration curve of Fig. 4.

Figure 5 presents an example of the output of the LO RD. obtained during a dynamic
compression test on 6061-T6 aluminum at a nominal strain rate of 3.8 x 10' S-I. The signal
has been smoothed to remove digital noise (introduced by the vertical resolution of the
digitizing oscilloscope), but has not been otherwise processed; the raw data from the
digitizer is superimposed on the smoothed curve for purposes of comparison. The initial
output level represents the total light intensity incident on the collector before specimen
deformation begins (i.e. it represents the initial diameter), and the final output level rep
resents the final specimen diameter. The diametral change in this case was 0.488 mm. Note.
however, that the output of the detector does not represent the diameter of a fixed station
along the specimen axis. The rigid body translation inherent in the Kolsky bar experiment
causes the detector to sample different parts of the specimen as time increases. and thus
interpretation of the signal requires the assumption of translational symmetry of the
deformations along the specimen axis. During very early times, when waves are still rever
berating within the specimen, the detector output represents an average diameter within
the sampling time (40 ns) of the digitizer. The instrumentation in the current incarnation
of the LO RD does not permit the resolution of the wave motion itself, both in terms of the
temporal resolution of the oscilloscope and in terms of the accurate measurement of the
small diametral changes associated with each wave.
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Fig. 3. Photograph of the Laser Occlusive Radius Detector system.
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Fig. 4. Calibration curve for the LORD using a conical calibration specimen.
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Fig. 5. Typical output from the LORD system: test on a 6061-T6 aluminum sample.

The next section discusses the kinematics of finite deformations within compression
Kolsky bar experiments and provides the theoretical framework within which the results
of the new experimental technique can be discussed.

Finite deformation kinematics jc)r Kolsky bar experiments
Consider the finite compression of a cylindrical Kolsky bar specimen of initial length

10 and initial diameter 2R (Fig. 6). For simplicity, let us assume that the deformations are
axisymmetric and always homogeneous (in particular, we shall ignore the wave propagation
within the specimen, and we shall assume sufficiently lubricated bar-specimen interfaces).
Defining the Cartesian coordinate system shown in Fig. 6, we can describe the finite
deformations of the specimen through the relations

Fig. 6. Schematic diagram of specimen and coordinate system for analysis.
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XI = i.(t)XI

Xc = w(t)Xc

x, = w(t)X, (4)

where the Xi represent the current coordinates of a material particle initially at the coor
dinates Xi' The quantities A(t) and wet) are the axial and radial stretches respectively:

. l(t)
(5)I.(t) = -I-

n

and

r(t)
(6)w(t) =R'

where l(t) and r(t) are the current length and the current radius. The deformation gradient
corresponding to eqn (4) is given by

(7)

where the ei represent unit vectors along the coordinate axes x" and the notation eiej

represents the tensor product e, ® ei. For a full elastic-plastic analysis we would assume
that the total deformation gradient can be multiplicatively decomposed into elastic and
plastic parts:

F = F"f!'. (8)

Further, the intermediate configuration can be chosen without rotation so that the plastic
deformation gradient can be defined as the symmetric tensor

(9)

where i.p(t) and wl'(t) are plastic stretch ratio. Equation (8) can then be solved for the elastic
deformation gradient:

(10)

However, the elastic deformations are extremely small in comparison to the plastic defor
mations that are developed within Kolsky bar experiments. Thus, an excellent approxi
mation to the kinematics is obtained by setting the plastic deformation gradient identically
equal to the total deformation gradient, so that

(11 )

Independent measurements of the stretches in eqns (5-6) then completely determine
the deformations in the problem. Of course, the axial and radial stretches may not be
independent variables. For example, a common assumption in plasticity is that plastic
deformations are incompressible, corresponding to the constraint that

J = det F = I.W c
= I. (12)

The incompressibility constraint of egn (12) is usually invoked in the analysis of
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Kolsky bar experiments to convert the measured engineering stresses to true stresses. An
alternative constraint that has sometimes been invoked is championed by Bell [e.g. Bell
(1985)], and amounts to the requirement that

trV = tr JFF T = 1.+2w = 3 (13)

where the notation "tr" represents the trace operator, and V is the left stretch tensor
corresponding to the deformation gradient in eqn (11). Independent measurements of the
stretches I, and w during the dynamic compression would provide the opportunity to
distinguish between the incompressibility (eqn. 12) and Bell (eqn. 13) constraints for any
given material and deformation regime.

The output of the LORD system provides the radial stretch directly, since it measures
the specimen radius as a function of time during the compression. The axial stretch can be
obtained from the reflected pulse in the bar, using the relation [e.g. Ramesh (1991)]

2c f'i.(t) = 1- f GR(r) dr.
() ,,(I

(14)

Thus we are now able to experimentally determine the entire deformation gradient
tensor (for an isotropic material undergoing axisymmetric deformations). The measured
stretches can then be used to check the validity of proposed constraints such as incom
pressibility, and to make the Kolsky bar technique useful even for the study of materials
for which the constraints are not established (e.g. porous materials).

The rate of deformation tensor D for this uniaxial compression problem is identical to
the velocity gradient (since the deformation gradient is symmetric) and is given by

(15)

where J, and ci) are the material time derivatives of the axial and radial stretches, respectively.
It should be pointed out here that in the past, although the results of compression Kolsky
bar experiments have usually been presented in terms of true stresses and true strains, the
axial strain rates quoted have always been the nominal strain rate (i/lo) rather than the true
axial rate of deformation 0./i.). A more consistent finite deformation approach is clearly of
value for the development of accurate constitutive models.

The next section presents some results obtained using the LORD on fully dense metals
(where plastic incompressibility is usually assumed to be a good approximation) and on
porous metals (which are plastically compressible). The application ofthe finite deformation
kinematics to the interpretation of experimental data is also demonstrated.

Results and discussion

Dynamic compression ol6061-T6 AI. We begin by discussing the results of a typical
experiment on the dynamic compression of 6061-T6 aluminum alloy. The initial specimen
diameter was 4.762 mm, and the initial specimen length was 2.722 mm. A summary of the
experimental results on the dynamic properties of this material is presented in the work of
Yadav et al. (1994). We focus here on the application of the LORD system to these
otherwise standard compression Kolsky bar experiments.

The LORD output shown in Fig. 5 was obtained during the dynamic compression of
6061-T6 Al at a nominal axial strain rate of 3.9 x 10' S-I. and can be converted into radius
information using the calibration curve from Fig. 4. The radial stretch wet} can then be
computed as the ratio of the current radius r(t) to the initial specimen radius R using eqn
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Fig. 7. Radial stretch measured using the LORD system for the 6061-T6 aluminum test result
presented in Fig. 5.
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Fig. 8. Comparison of the output of the LORD system. presented as radial stretch versus time. with
the axial strain rate history computed from the reflected strain pulse (measured using strain gages
on the bar). Note that there is very little change in radius once the strain rate pulse begins to unload.

(6). The corresponding history of the radial stretch is presented in Fig. 7. The total radial
change is 0.244 mm. Note that this measurement of the radial stretch is a direct measure;
stress equilibration need not be invoked to compute it, in contrast to the axial strains
computed using eqn (2). A radial stretch rate r..iJ/w can be computed from the slope of the
curve in Fig. 7, analogous to the axial strain rate computed using eqn (3). In interpreting
Fig. 7, it is important to note that the vertical resolution (8-bits) of the digitizing oscilloscope
was such that radial changes smaller than 5 Jim could not be resolved; thus the elastic
deformations are lost in the digital noise.

We now have two experimental measurements (axial and radial) of the deformation
in the specimen. The two measurements are both presented in Fig. 8, using a common time
base in which time zero corresponds to the arrival of the incident pulse at the strain gage
on the incident bar (this pulse is used as a common trigger signal for both data acquisition
systems). The axial information presented in Fig. 8 is the reflected pulse (normalized using
eqn (3) to obtain the axial strain rate). This reflected pulse has been corrected for dispersion
back to the time and position at which the pulse is at the specimen itself (the initial blip
observed in this reflected pulse before the primary rise does not represent a mechanical
signal; it results from a short electrical noise spike generated when the pulse arrives at the
lead wire connections for the strain gages). The radial information presented in Fig. 8 is
the radial stretch of Fig. 7. Note that the radial deformations begin at approximately the
time at which the axial strain rate pulse begins its rise. The section of the radial stretch
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Fig. 9. Comparison of the axial stretch measured using the strain gages on the bars and that
computed using the radial stretch measured by the LORD system using the incompressibility

constraint (eqn 12) and the Bell constraint (eqn 13).

curve during the risetime of the axial pulse is somewhat different from the rest of the radial
stretch curve, because during this time waves are still reverberating within the specimen
and a homogeneous deformation has not been established. The radial strain increases
relatively uniformly after the initial risetime until the reflected pulse begins to unload,
corresponding to a reduction in the rate of deformation in the specimen. The radial
deformations are small once unloading begins; this observation may be explained by
assuming that the unloading is largely elastic (for this material), with reverberations of
the unloading waves occurring within the specimen. A consequence of the small radial
deformations after unloading is that the apparent duration of the radial stretch is slightly
smaller than the apparent duration of the axial strain rate pulse.

Integration of the reflected pulse using eqn (14) provides the axial stretch in the
specimen. This experimental measurement of the axial stretch can be compared directly
with the axial stretch computed from the measured radial stretch using either the plastic
incompressibility constraint (eqn 12) or the Bell constraint (eqn 13). Such a comparison is
presented in Fig. 9. It is clear that the plastic incompressibility constraint is more in accord
with the measured axial and radial stretches. Note that this measure of the constraint is
obtained from time-resolved measurements of the full deformation gradient tensor during
the dynamic deformation of this material, rather than merely from measurement of the
geometry before and after plastic deformation. Thus elastic unloading is not an issue in
this evaluation of the plasticity constraint. Note further that the plastic deformations that
are developed in these experiments are indeed finite, and are sufficient to resolve differences
between the two constraints.

Since plastic incompressibility has been determined to be the appropriate constraint
for the finite plastic deformations of this material, we will use it in our further discussions
of the results on 6061-T6 aluminum. The incompressibility constraint can be used in
conjunction with the radial stretch measured with the LORD system to provide the axial
strain in the specimen, from data measured directly at the specimen. The stress in the
specimen can be obtained from eqn (I) using the transmitted pulse. The true stress (J and
the engineering stress S from eqn (I) are related very simply by

(Ja = SA (16)

where A and a are the initial and current cross-section areas respectively. In the general
case, it follows that the true stress can then be obtained from the relation

A I I ;.
(J=S-=S··_=S-.

a J 10 J

In the particular case of axisymmetric deformations, eqn (17) reduces to

(17)
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S
(18)

This result could of course be directly obtained also from the first part of eqn (17) in terms
of the area ratio. Thus eqn (18) and the direct measurement of the radial stretch provides
the true stress directly from the engineering stress. Note that eqn (18) is correct whether or
not the material is plastically incompressible.

Using eqn (18) and the measured radial stretch, a true stress-true strain curve can be
obtained for the specimen material (the true strain measure used is I: = In(l/Io) = In A). Note
that this procedure does not use any information from the incident or reflected pulses,
suggesting that we could do away with the incident bar altogether (we shall discuss this
approach subsequently). The true stress-true strain curve obtained in this way for the 6061
T6 aluminum (using the LORD data of Fig. 8) is presented in Fig. 10.

The constitutive information in Fig. lOis presented in terms of true stress and true
strain: what is the corresponding strain rate'? Using plastic incompressibility, we have

det fP = det F = 1, =:> tr D" = O. (19)

Using eqn (15) together with eqn (19), we obtain

i. (i)

~+2-=0.
I. (IJ

(20)

Thus for incompressible materials the axial rate of deformation can be computed from the
radial rate of deformation, which can be obtained directly from the measured time-history
of the radial deformations. Note that no dispersion correction is necessary to obtain the
axial rate of deformation using this approach, since the radial deformations are measured
directly at the specimen. It should be emphasized that all of the remote gage results presented
in this paper have been corrected for the dispersion of longitudinal waves propagating in
the first mode in the bars.

The discussion of the previous paragraphs brings up an issue that is extremely impor
tant for the constitutive characterization of materials at high strain rates. Almost uniformly
in the literature, the axial "true strains" quoted are logarithmic strains obtained using eqn
(2) and the relation I: = In(l/Ir,) = In(l-eJ: and the "true stresses" quoted are obtained
using eqns (1) and (17) and invoking incompressibility: (J, = S(I;lo) = S(1-eJ. However,
the strain rates quoted for compression Kolsky bar experiments are always obtained using
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eqn (3), and represent the nominal strain rate illo rather than the true axial rate of
deformation ill = IF. For the purposes of constitutive modeling it is important to be
consistent in the choice of configuration, so that Kolsky bar strain rate data should really
be quoted in terms of the true axial rate of deformation t = ljl = I.IA. This is actually very
easy to do, even without the use of the LORD system, since we have

. I. i i 10 e,
E=-=-=-- =---
. i I 10 I (I-e,)'

(21 )

There is a substantial difference between the nominal strain rate and the rate of
deformation for the finite deformations that are developed in compression Kolsky bar
experiments. For example, Fig. II presents a comparison of the nominal axial strain rate
with the axial rate of deformation for the experiment on 6061-T6 aluminum corresponding
to Fig. 10. It is clear that the mean rate of deformation (4.3 x 103

S-1) is significantly higher
than the mean nominal axial strain rate (3.9 x 103 S-I); further, the variation in the rate of
deformation is smaller than that in the nominal rate. The use of the rate of deformation
results in a significant upward revision of the quoted strain rate corresponding to a given
Kolsky bar experiment, and may have significant effects on the rate-sensitivities that are
estimated for materials. Another consequence of using the rate of deformation is that there
is less of a reduction of the rate with increasing time during an experiment. This is an
important effect, because most high-rate laboratories use wave-shaping of the incident pulse
in order to obtain a nominal strain rate that is more nearly constant during a test (especially
for work-hardening materials).

One critical result of using the procedures leading up to eqn (20) to obtain the stress
strain curve is that no information is required from the incident bar, while the output bar
is now used solely as a force transducer. A direct extension of this idea is to use the LORD
system to measure radial deformations on a specimen that is directly impacted by the
projectile, with the specimen backed by an output bar. The advantage of this approach is
that somewhat higher strain rates can be achieved in the specimen while still accounting
for the usual concerns of radial inertia and frictional end conditions. Such a direct impact
high strain rate setup is currently under construction. A version of this approach has been
implemented by Gorham et al.. who used a high-speed framing camera to record the
specimen deformations during direct impact. However, the LORD system is dramatically
cheaper to implement and much more accurate in terms of temporal and spatial resolution.
Another version of this direct impact high strain rate experiment was used by Dharan and
Hauser (1970); lacking a direct measure of strain. these authors were required to make
very restrictive assumptions on the deformations in order to interpret their experiments.

The experimental technique used here is extremely easily adapted to the simultaneous
local measurement of axial and radial strains, using two orthogonal line lasers (one mea
suring the distance between the bar faces, and the other measuring the specimen diameter).
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A paper describing such a measurement system is under preparation (Ramesh and Garmon,
1995). For the case where axisymmetric deformations cannot be guaranteed, as with
anisotropic materials, three orthogonal line lasers can be used (i.e., the three stretches in
the el. e2 and e~ directions can be independently measured). However. our experiments to
date have focused on isotropic materials.

In the next section we present the application of the LORD system to investigation of
the dynamic compression of porous metals (in which plastic compressibility is certain).
Note that the investigation of porous metals within the compression Kolsky bar requires a
measure of the radial deformations, since plastic incompressibility can no longer be used
to compute the total deformations or to reduce the engineering stresses to true stresses.

Dynamic compression oia porous metal
The characterization of porous metals at high strain rates is essential for the accurate

modeling of manufacturing processes involving powder precursors (e.g. the high-speed
forging ofa powder metal component). Since a large number of the manufacturing processes
devoted to powder metal parts involve overall compressive stresses (e.g. forging and
extrusion). the dynamic compressive behavior of porous metals is of particular interest.
The fundamental approach presented here involves the characterization of the porous metal
in terms of the overall dynamic behavior, accounting for the evolution of the porosity in a
volume-averaged sense but without attempting to track individual pores.

The results presented here were obtained on porous pure iron. The porous iron was
produced by CIPing Hoeganaes Ancorsteel 1000 powders, which are 99.75% pure iron.
with C < 0.03%, S < 0.025%. Mn < 0.25%, and Cu < 0.3%. Porous iron compacts were
made by CIPing, then sintered in hydrogen at l200C for 20 hours and furnace cooled.
Compression Kolsky bar specimens were machined out of the sintered compact using
EDM, and then annealed at 800C for one hour in a hydrogen atmosphere. The results
presented in this paper are for a pore volume fraction of 13.6%. A much more detailed
description of the experiments is presented by da Silva and Ramesh (1995).

Just as with the fully dense 6061-T6 materiaL the LORD system was used to measure
the radial stretch w(t) during the dynamic compression of the porous iron. The axial stretch
i(t) was computed from the strain gage signals in the input bar using eqn (14). These two
independent measures of the deformation completely define the deformation gradient F.
and so the volume ratio can be computed from the relation

J = det F = i.we. (22)

Since the elastic deformations are negligible in comparison to the plastic deformations. this
volume ratio represents the overall plastic compressibility of the porous metal. If it is now
assumed that the iron matrix itself is plastically incompressible, eqn (22) leads to a measure
of the evolution of the pore volume fraction. Detailed results on the evolution of the
porosity during compressive deformations are presented by da Silva and Ramesh (1995).

With the complete kinematics of the deformation known from the experiment, it is
now possible to represent the overall behavior of the porous iron in terms of a true stress
true strain curve (note that the true stress must now be calculated taking the evolving
volume of the specimen into account). Equation (18) and the direct measurement of the
radial stretch provides the true stress directly from the nominal stress. Since the material is
plastically compressible, there is no means (note eqn (17)) of obtaining the true stress
without this measure of the radial deformations. For example. the true stress versus true
strain curve obtained during a dynamic compression test on porous iron is presented in
Fig. 12. The axial rate of deformation corresponding to the stress-strain curve of Fig. 12 is
3.9 x 10~ Sl.

Conclusions
An analysis of the compression Kolsky bar experiment in terms of finite deformations

has been developed. utilizing the results of a novel technique for the direct non-contact
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Fig. 12. Example of a true stress-true strain curve obtained during the dynamic compression of

porous pure iron.

measurement of the radial deformations of a specimen during a compression Kolsky bar
experiment. Using the finite deformation analysis in conjunction with the new technique,
we have examined the relative validity of the incompressibility and Bell constraints for
finite deformation dynamic plasticity. The experimental results show that the plastic incom
pressibility constraint is more appropriate for the dynamic compression of 6061-T6 alumi
num. Further, it has been shown that the traditional measure of axial strain rate in Kolsky
bar experiments should be replaced by a measure of the axial rate of deformation. Finally,
the technique has been used to investigate the plastic deformations of porous iron during
dynamic compressive loading. Thus the enhancement of the traditional compression Kolsky
bar technique with the LORD system makes it possible to also investigate the high-strain
rate behavior of plastically compressible materials. However, the difficulties associated with
the development of accurately characterized large-strain experiments that operate at a
constant high rate must still be carefully addressed.
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